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SUMMARY

A complete boundary integral formulation for compressible Navier–Stokes equations with time
discretization by operator splitting is developed using the fundamental solutions of the Helmholtz
operator equation with di�erent order. The numerical results for wall pressure and wall skin friction
of two-dimensional compressible laminar viscous �ow around airfoils are in good agreement with �eld
numerical methods. Copyright ? 2004 John Wiley & Sons, Ltd.
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INTRODUCTION

The boundary integral equation method is closely related to classical Green’s function method.
In the classical Green’s function method, one applies the de�nition of the adjoint operator
to a special function, which satis�es certain suitable boundary conditions to get an explicit
expression for the solution. however, for non-linear problems as well as for linear problems
with geometry of practical interest, obtaining an expression for the Green’s function may be
hard. It would be desirable to develop computational models of handling complexity, but based
on cause-and-e�ect concepts accessible to the applications engineer. Such a project is o�ered
by the new generation of boundary integral methods now starting to emerge. For non-linear
problems, as in the case under consideration, the non-linear terms are formally treated as non-
homogeneous terms. This yield the presence of domains integrals. In this paper the methods
for transformation of domain integrals into boundary integrals presented in References [1, 2]
are extended further and a complete boundary integral formulation for compressible Navier–
Stokes equations with time discretization by operator splitting is developed. The advantages
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of complete boundary integral formulation are impressive: no mesh is needed external to the
body boundary; very complex geometries can be treated; computation time are vastly smaller;
conventional computers can be employed. The numerical results for the surface pressure and
skin friction of airfoil given by present method show good agreement with �eld numerical
methods.

THEORETICAL BASIS

The non-dimensional compressible Navier–Stokes equations are as follows:

@�=@t +∇ · (�u) = 0

�@u=@t + �(u · ∇)u+ (� − 1)T∇� = (1=Re){∇2u+ (1=3)∇(∇ · u)}
�@T=@t + �u · ∇T + (� − 1)�T∇ · u = (1=Re){(�=Pr)∇2T + F(∇u)}

(1)

where pressure p, density �, velocity u= {ui}, temperature T are non-dimensionalized by the
free stream values �∞|u∞|2, �∞; u∞, and |u∞|2=cv, respectively. Re; M∞; Pr; cv and � are
the Reynolds number, the free stream mach number, the Prandtl number, the speci�c heat at
constant volume and the ratio of speci�c heat, respectively.
For two-dimensional �ow:

F(∇u)= (4=3){(@u1=@x)2 + (@u2=@y)2 − (@u1=@x)(@u2=@y)}+ (@u1=@x + @u2=@y)2

where u1 and u2 are the velocity components along x and y directions. For simplicity, only
Direchlet boundary conditions are considered.
On far �eld boundaries:

�=1

T = T∞=1=�(� − 1)M 2
∞ (2)

u= u∞

On the rigid boundaries of body:

|u| = 0
T = TB=T∞{1 + ((� − 1)=2)M 2

∞} (the free stream total temperature)
(3)

Since we consider time dependent equations, the initial conditions have also to be added:

�(r; 0)=�0(r); u(r; 0)= u0(r); T (r; 0)=T0(r)

In order to establish the complete boundary integral formulation for compressible Navier–
Stokes equations, a new variable �= ln � is introduced. With this variable, the compressible
Navier–Stokes equations become,

@�=@t +∇ · u+ u · ∇�=0

@u=@t − �∇2u+ �∇�=  (�; u; T ) (4)

@T=@t − �∇2T = �(�; u; T )
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where �=1=Re; �= ��=(RePr); �=(� − 1)TB=(1=�)[(� − 1)=2 + 1=M 2
∞]

 (�; u; T ) =−(� − 1)[∇T + (T − TB)∇�]− (u · ∇)u

+(1=Re){e−�(∇2u+ 1=3∇(∇ · u))− ∇2u}

�(�; u; T; ) =−(� − 1)T∇ · u − u · ∇T + �=(RePr)(e−� − 1)∇2T + (1=Re)e−�F(∇u)

Using time discretization by operator splitting methods, we should obtain the following �
scheme [3] from Equation (4). In this paper we take �= 1

4 . For n¿0, starting from �n; un; T n

we solve

(�n+1=4 − �n)=(�t=4) +∇ · un+1=4 =−un · ∇�n (5a)

(un+1=4 − un)=(�t=4)− a�∇2un+1=4 + �∇�n+1=4 =  (�n; un; T n) + b�∇2un (5b)

(Tn+1=4 − Tn)=(�t=4)− a�∇2Tn+1=4 = �(�n; un; T n) (5c)

(�n+3=4 − �n+1=4)=(�t=2) + un+3=4∇�n+3=4 = − ∇ · un+1=4 (6a)

(un+3=4 − un+1=4)=(�t=2)− b�∇2un+3=4 −  (�n+3=4; un+3=4; T n+3=4)= a�∇2un+1=4 − �∇�n+1=4

(6b)

(Tn+3=4 − Tn+1=4)=(�t=2)− b�∇2Tn+3=4 − �(�n+3=4; un+3=4; T n+3=4)= a�∇2Tn+1=4 (6c)

(�n+1 − �n+3=4)=(�t=4) +∇ · un+1 = − un+3=4 · ∇�n+3=4 (7a)

(un+1 − un+3=4)=(�t=4)− a�∇2un+1 + �∇�n+1 =  (�n+3=4; un+3=4; T n+3=4) + b�∇2un+3=4 (7b)

(Tn+1 − Tn+3=4)=(�t=4)− a�∇2Tn+1 = �(�n+3=4; un+3=4; T n+3=4) + b�∇2Tn+3=4 (7c)

with 0¡a; b¡1; a+ b=1 for �= 1
4 :

a=(1− 2�)=(1− �)=2=3; b= �=(1− �)=1=3 (8)

It can be seen that at both time step n+ 1=4 and n+ 1 all require the solution of two same
systems of couple Equations (5a), (5b) and (7a), (7b). They can be written as:

	�+∇ · u = g (9)

	u − 2=3�∇2u+ �∇� = f (10)
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where 	=1=(�t=4), g and f are known functions of �, u and T at previous time step.

g=−un · ∇�n + 	�n (for Equation (5a))

=−un+3=4 · ∇�n+3=4 + 	�n+3=4 (for Equation (7a)) (11)

f=  (�n; un; T n) + (1=3)�∇2un + 	un (for Equation (5b))

=  (�n+3=4; un+3=4; T n+3=4) + 1=3�∇2un+3=4 + 	un+3=4 (for Equation (7b)) (12)

Taking the divergence of both sides in Equation (10), we have

	∇ · u − 2=3�∇2(∇ · u) + �∇2�=∇ · f (13)

On the other hand, Equation (9) yields

∇ · u= g − 	� (14)

Combining Equations (13) and (14), we obtain

	1� − ∇2�=f1 (15)

with 	1 = 	2=(�+ (2=3)	�); f1 = (	g − ∇ · f − (2=3)	�∇2g)=(�+ (2=3)	�) in order to have
a well posed problem in �, it is necessary to have an additional boundary condition of type:
�= k on body. After computing � from Equation (15), u may be solved from Equation (10)
which is now reduced to the same type as Equation (15) with the boundary condition (2)–(3)
and then the value of k has to be calculated in order that Equation (9) is satis�ed. Equations
(5c) and (7c) already take the type as Equation (15). A linear variant of Equations (6b)
and (6c) are obtained by substituting  (�n+1=4; un+1=4; T n+1=4) for  (�n+3=4; un+3=4; T n+3=4) in
Equation (6b) and �(�n+1=4; un+1=4; T n+1=4) for �(�n+3=4; un+3=4; T n+3=4) in Equation (6c).
After these substitutions, Equations (6b) and (6c) are also reduced to the type as
Equation (15). Hence, the problem for the solution of compressible Navier–Stokes equations
are now really reduced to the problems for the solution of a series of equation with the type
of Equation (15). Equation (15) can be solved by following fundamental solution method.
Multiplying Equation (15) with the fundamental solution H0 of Helmholtz operator equation
with order zero and integrate it with respect to domain �, we have

∫
�
(	1� − ∇2�)H0 d�=

∫
�
f1H0 d� (16)

where H0 satis�es equation:

(	1 − ∇2)H0 = 
(r) (17)

Here 
 is the impulse function, r is the position vector.
According to the Green theorem,

∫
�
H0∇2� d�=

∫
B
(H0@�=@n − �@H0=@n) dB+

∫
�
�∇2H0 d� (18)
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Substituting Equation (18) into Equation (16), we have
∫
�
�(	1 − ∇2)H0 d�=

∫
B
(H0@�=@n − �@H0=@n) dB+

∫
�
f1H0 d� (19)

where B are the boundaries of domain �. Substituting Equation (17) into the left-hand side
of Equation (19) and considering the integrating properties of impulse function 
, we have

c�(r)=
∫
B
(H0@�=@n − �@H0=@n) dB+

∫
�
f1H0 d� (20)

c is a coe�cient, for smooth boundary c= 1
2 . In order to transform the domain integral∫

� f1H0 d� in Equation (20) into a series of boundary integrals, two new functions A0 and
H1 are �rst introduced. A0 =f1; H0 = (	1 − ∇2)H1. Thus,∫

�
f1H0 d�=

∫
�
A0(	1 − ∇2)H1 d� (21)

According to the Green theorem
∫
�
A0∇2H1 d�=

∫
B
(A0@H1=@n − H1@A0=@n) dB+

∫
�
H1∇2A0 d�

Hence,

∫
�
f1H0 d�=

∫
�
A0(	1 − ∇2)H1 d�=

∫
�
H1(	1 − ∇2)A0 d�

−
∫
B
(A0@H1=@n − H1@A0=@n) dB (22)

Similarly, if we set A1 = (	1 − ∇2)A0; H1 = (	1 − ∇2)H2, then the domain integral on the
right-hand side of Equation (22) can also be rewritten as

∫
�
H1(	1 − ∇2)A0 d�=

∫
B
(A1@H2=@n − H2@A1=@n) dB+

∫
�
H2(	1 − ∇2)A1 d� (23)

The procedure can be generalized by introducing two sequence of functions de�ned by the
following recurrence formulae

Aj+1 = (	1 − ∇2)Aj; Hj=(	1 − ∇2)Hj+1; j=0; 1; 2; : : : (24)

Thus the domain integral
∫
� f1H0 d� in Equation (20) can be expressed as the summations

of in�nite boundary integrals
∫
�
f1H0 d�=

∞∑
j=0

∫
B
(Aj@Hj+1=@n − Hj+1@Aj=@n) dB (25)

More generally, the jth order fundamental solution of Helmholtz equation Hj satis�es

(	1 − ∇2)Hj=Hj−1; j=1; 2; : : :
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and can be expressed as [4]

B0 = 1=(2�)

H0 = B0K0(	
1=2
1 r)

Bj = Bj−1=(2j	1)=B0=((2	1) jj!)

Hj = Bj(	
1=2
1 r) jKj(	

1=2
1 r)=B0r jKj(	

1=2
1 r)=((2	1=21 )

jj!); j=1; 2; : : :

(26)

where Kj(x) represents the second kind modi�ed Bessel function of jth order. Substituting
Equation (25) into Equation (20), a complete boundary integral formulation for Equation (15)
is �nally obtained and can be solved by well known boundary element method.

c�(r)=
∫
B
(H0@�=@n − �@H0=@n) dB+

∞∑
j=0

∫
B
(Aj@Hj+1=@n − Hj+1@Aj=@n) dB (27)

Notice that the introduction of factor (2	1=21 )
jj! into the denominator of expression Hj guar-

antees the rapid convergence of Equation (27) as j increase, especially for small �t and the
�ow with higher Reynold’s number because the smaller the �t and the higher the Reynold’s
number, the larger the 	1 will be.

NUMERICAL RESULTS AND CONCLUDING REMARKS

In 1987, a GAMM-workshop was organized to bring a small number of scientists highly
concerned with the numerical solution of the compressible Navier–Stokes equations to calcu-
late the assigned test problems [5] and to compare the results presented by the contributors
each other. One of the assigned test problem was external 2D �ow around a NACA0012
airfoil with Direchlet body boundary condition at M∞=0:8; Re=73 and 500, respectively,
angles of attack �=10◦. All the methods used by the contributors in Reference [5] were
�eld method (�nite di�erences, �nite elements and �nite volumes). In order to compare the
results given by present complete boundary integral method with the results [6] given in
Reference [5] the same test problems are calculated in this paper. One of the contributors
[6] in Reference [5] solved the problems by using a new explicit Navier–Stokes code based
on a combination of central �nite di�erencing and rational Rung–Kutta time stepping. It is
a more accurate �eld method. So it’s results is used for comparison. Figures 1 and 2 show
the laminar viscous wall pressure coe�cient and skin friction coe�cient on NACA 0012
airfoil calculated by present method and the results of �eld method given in Reference [6].
No �eld values (such as streamlines around airfoil, etc.) are compared because the results of
the solution of boundary integral formulation are the values of variables on the wall boundary.
For the �ow with M∞=0:8 and Re=73, if we take time step �t=0:1 then we have

�=0:014; �=1:26; 	=40, 	1 = 979:792. The relationships between j and Hj=(r jKj) are as
follows:

j Hj(r jKj)
0 0:159
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Figure 1. (a) Surface pressure coe�cient cp; and (b) skin friction coe�cient cf.
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Figure 2. (a) Surface pressure coe�cient cp; and (b) skin friction coe�cient cf.

1 2:540× 10−3

2 2:029× 10−5

3 1:080× 10−7

4 4:313× 10−10

5 1:378× 10−12

The solutions are convergent at j=4 and the maximum value of the relative di�erence of
pressure coe�cient between j and j − 1 (cpj − cpj−1)=cpj is less than 10−7.
For the �ow with M∞=0:8 and Re=500, if we take time step �t=0:1 then we have

�=0:002; �=1:26; 	=40, 	1 = 1218:58. The relationships between j and Hj=(r jKj) are as
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follows:

j Hj=(r jKj)
0 0:159

1 2:277× 10−3

2 1:631× 10−5

3 7:787× 10−8

4 2:788× 10−10

5 7:988× 10−13

The solutions are convergent at j=3 and the maximum value of the relative di�erence of
pressure coe�cient between j and j − 1 (cpj − cpj−1)=cpj is less than 10−7. The computing
results show good agreement with the �eld method [6]. It can also be seen that even for low
Reynold’s number, the solution can still be converged at a small number of j. Obviously, the
number of j for convergence will be reduced as the time step is further reduced.
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